Abstract

Alpha Magnetic Spectrometer (AMS-02) is a particle-physics detector from a module attached to the outside of the International Space Station (ISS). The temperature of the components in AMS-02 must be kept within their different operational ranges but also must be stable over both time and volume. Thermal modeling and simulations for the radiator and the electronic crates of AMS-02 were carried out by applying the Crank–Nicholson implicit solution. Based on reducing the temperature gradient of the radiator and the mass of the thermal control system, the layout of the heat pipes in the radiator was optimized to solve the overheating issue of the electronic crates. The non-operational and operational temperature dissipation for the thermal control system was calculated. The analysis results for the radiator and the electronic crates can meet the running requirements of AMS-02 on the ISS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.