Abstract

Thermal transient measurements of high power GaN-based LEDs with multi-chip designs are presented and discussed in the paper. Once transient cooling curve was obtained, the structure function theory was applied to determine the thermal resistance of packages. The total thermal resistance from junction to ambient considering optical power is 19.87 K/W, 10.78 K/W, 6.77 K/W for the one-chip, two-chip and four-chip packages, respectively. The contribution of each component to the total thermal resistance of the package can be determined from the cumulative structure function and differential structure function. The total thermal resistance of multi-chip packages is found to decrease with the number of chips due to parallel heat dissipation. However, the effect of the number of chips on thermal resistance of package strongly depends on the ratio of partial thermal resistance of chip and that of slug. Therefore, an important thermal design rule for packaging of high power multi-chip LEDs has been analogized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.