Abstract

LED arrays with pixel numbers of 3×3, 4×4, and 5×5 have been studied in this paper in order to enhance the optical output power and decrease heat dissipation of an AlGaInP-based light emitting diode display device (pixel size of 280×280 μm) fabricated by micro-opto-electro-mechanical systems. Simulation results showed that the thermal resistances of the 3×3, 4×4, 5×5 arrays were 52°C/W, 69.7°C/W, and 84.3°C/W. The junction temperature was calculated by the peak wavelength shift method, which showed that the maximum value appears at the center pixel due to thermal crosstalk from neighboring pixels. The central temperature would be minimized with 40 μm pixel pitch and 150 μm substrate thickness as calculated by thermal modeling using finite element analysis. The modeling can be used to optimize parameters of highly integrated AlGaInP-based LED arrays fabricated by micro-opto-electro-mechanical systems technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.