Abstract

This paper investigates the effectiveness of a Thermal Control Unit (TCU) for portable electronic devices by performing experimental and numerical analyses. The TCU objective is to improve thermal management of electronic devices where their operating time is limited to few hours. It is composed of an organic Phase Change Material (PCM) and a Thermal Conductivity Enhancer (TCE). The TCU can provide a reliable solution to portable electronic devices, which avoids overheating and thermally-induced fatigue, as well as a solution which satisfies the ergonomic requirement. Since the thermal conductivity of the PCM is very low, a TCE is incorporated into the PCM to boost its conductivity. The TCU structure is complex, and modeling an electronic device with it requires time and effort. Hence, this research develops approximate, yet effective, solutions for the TCU. The TCU component properties are averaged and a single TCU material is considered. This approach is evaluated by comparing the numerical predictions with the experimental results. The numerical model is used to study the effect of some important parameters that are experimentally expensive to examine, such as the heat transfer coefficient, the PCM latent heat, the Stefan number, and the effect of the heat source power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call