Abstract

High performance catalysts for carbon monoxide (CO) oxidation were obtained through thermal activation of a CuBTC (BTC: 1,3,5-benzenetricarboxylic acid) metal–organic framework (MOF) in various atmospheres. X-ray diffraction (XRD), X-ray photonelectron spectroscopy (XPS), N2 adsorption–desorption measurement, and field emission scanning electron microscopy (FESEM) were adopted to characterize the catalysts. The results show that thermal activation by reductive H2 may greatly destroy the structure of CuBTC. Inert Ar gas has a weak influence on the structure of CuBTC. Therefore, these two catalysts exhibit low CO oxidation activity. Activating with O2 is effective for CuBTC catalysts, since active CuO species may be obtained due to the slight collapse of CuBTC structure. The highest activity is obtained when activating with CO reaction gas, since many pores and more effective Cu2O is formed during the thermal activation process. These results show that the structure and chemical state of coordinated metallic ions in MOFs are adjustable by controlling the activation conditions. This work provides an effective method for designing and fabricating high performance catalysts for CO oxidation based on MOFs.

Highlights

  • Catalytic oxidation of carbon monoxide (CO) has drawn much research attention due to its significance in fundamental research and practical applications in pollution air purification, vehicle exhaust removal, and CO preferential oxidation in hydrogen-rich gas [1,2,3,4,5]

  • The process of tableting did not change the crystalline phase structure of CuBTC, except for a slight decrease in its intensity according to the X-ray diffraction (XRD) characterization

  • Thermal activation was proven to be significant in enhancing CO oxidation activity over CuBTC

Read more

Summary

Introduction

Catalytic oxidation of carbon monoxide (CO) has drawn much research attention due to its significance in fundamental research and practical applications in pollution air purification, vehicle exhaust removal, and CO preferential oxidation in hydrogen-rich gas [1,2,3,4,5]. Noble metal catalysts, including supported Au, Pd, Pt, etc., exhibit excellent CO oxidation activity [6,7,8]. Due to their relatively high cost, large-scale applications are limited. To solve this problem, supported bimetallic catalysts (such as Pd–Cu) [9,10] and transition-metal oxides [11,12,13,14] have been investigated. If supported non-noble metal catalysts with high CO oxidation activity can be fabricated, it will have great theoretical value and practical significance

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.