Abstract

Thermal acoustic oscillations are often observed in tubes which penetrate a cryogenic system and are closed at the warm end and open at the cold end. Such tubes are genrally used for filling or vetning the tank, providing relief pressure or inserting instruments taps. Large amounts of heat (of the order of ten to a thousand times more than by normal heat conduction) can be transferred into a cryogenic system when such thermaloscillations occur. A number of studies examining thermal acoustic oscillations in liquid helium systems have been performed by Rott et al. However, only minimal consideration has been given to such oscillationsin liquid and sluch hydrogen systems. This study extends Rott's theory to the stability aspects of thermal acoustic oscillations for a straight tube closed at the warm end and inserted into a Dewar flask filled with triple point liquid hydrogen when the cold open end is located above the liquid surface. These results can also be applied to a slush hydrogen when the pressure in the Dewar flask is reduced to the triple point pressure of hydrogen. Numerical results have been obtained in this study for developing stability curves, establishing oscillation frequency characteristics and identifying critical configurations for initiating such oscillation. The mechanisms associated with the two branches of the stability curves for thermal acoustic oscillations have also been investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call