Abstract

Surgical resection is the only treatment of colorectal liver metastases that can ensure long-term survival and cure in some patients. However, only 20% of patients are suitable for surgery. As a result, many nonresectional modalities of treatment have been assessed to provide an alternative to liver resection. Several limitations have been observed when using these techniques and available evidence is limited. Here, we report that a new design of high intensity focused ultrasound transducer can significantly enlarge the coagulated volume over short periods of time and that treatment in the liver can be guided in real-time using an integrated ultrasound imaging probe. Our long-term objective is to develop a device that can be used during surgery for eventual clinical use in conjunction with resection. Eight ultrasound emitters, divided into 256 elements, were created by sectioning a single toroid piezocomposite transducer. The focal zone was conical in shape and located 70 mm from the transducer; enabling the treatment of deep-seated tumors. A single thermal lesion was created when the eight emitters performed alternative and consecutive 5-s ultrasound exposures. This article presents in vivo evidence that the coagulated volume obtained from a 40 s total exposure in the liver was 7.0 ± 2.5 cm 3 (minimum 1.5 – maximum 20.0 cm 3) with an average diameter of 17.5 ± 3.8 mm (minimum 10.0 – maximum 29.0 mm). All lesions were visible with high contrast on sonograms. The correlation between the diameter of lesions observed on sonograms and during gross examination was 92%. This method also allowed the user to easily enlarge the coagulated volume by juxtaposing single lesions. This approach may have a role in treating unresectable colorectal liver metastases and may also be used in conjunction with resection to extend its limits. (E-mail: David.Melodelima@inserm.fr)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call