Abstract

Raman frequency conversion of high average power pulsed Nd:YAG laser radiation into the near IR spectral region in a barium nitrate Raman laser was studied with the emphasis on thermal effects inside the Raman-active medium. The probe-beam technique together with numerical reconstruction, done by integrating the transient heat conduction and paraxial wave equations, revealed dynamics of the induced distortions featuring high-order optical aberrations. By utilizing the Zernike expansion of the reconstructed phase profile and implementing a special focusing geometry of the pump beam, partial compensation of the distortions was realized in a stable configuration of the Raman cavity. Generation of the first-, second-, and third-order Stokes radiation with output power of 17, 9.5, and 5.5 W corresponding to a quantum conversion efficiency of 32, 21, and 13% is reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call