Abstract

One of the most significant biological disturbances on a tropical coral reef is a population outbreak of the fecund, corallivorous crown-of-thorns sea star, Acanthaster planci. Although the factors that trigger an initial outbreak may vary, successive outbreaks within and across regions are assumed to spread via the planktonic larvae released from a primary outbreak. This secondary outbreak hypothesis is predominantly based on the high dispersal potential of A. planci and the assertion that outbreak populations (a rogue subset of the larger population) are genetically more similar to each other than they are to low-density non-outbreak populations. Here we use molecular techniques to evaluate the spatial scale at which A. planci outbreaks can propagate via larval dispersal in the central Pacific Ocean by inferring the location and severity of gene flow restrictions from the analysis of mtDNA control region sequence (656 specimens, 17 non-outbreak and six outbreak locations, six archipelagos, and three regions). Substantial regional, archipelagic, and subarchipelagic-scale genetic structuring of A. planci populations indicate that larvae rarely realize their dispersal potential and outbreaks in the central Pacific do not spread across the expanses of open ocean. On a finer scale, genetic partitioning was detected within two of three islands with multiple sampling sites. The finest spatial structure was detected at Pearl & Hermes Atoll, between the lagoon and forereef habitats (<10 km). Despite using a genetic marker capable of revealing subtle partitioning, we found no evidence that outbreaks were a rogue genetic subset of a greater population. Overall, outbreaks that occur at similar times across population partitions are genetically independent and likely due to nutrient inputs and similar climatic and ecological conditions that conspire to fuel plankton blooms.

Highlights

  • Outbreaks of the crown-of-thorns sea star, Acanthaster planci, are widely recognized as a major threat to coral reef ecosystems

  • Regional partitioning among the north central Pacific (NC), northwestern Pacific (NW), and south central Pacific (SC) is confirmed by analysis of molecular variance (AMOVA) (WCT = 0.60, P,0.001; Table 2)

  • Control region markers in the central Pacific, we discovered substantial genetic differentiation in all A. planci populations from different regional and archipelagic zones investigated, suggesting that outbreaks in the central Pacific are not triggered by mass dispersal events, as previously proposed [20], but are rather formed from independent events

Read more

Summary

Introduction

Outbreaks of the crown-of-thorns sea star, Acanthaster planci, are widely recognized as a major threat to coral reef ecosystems. Outbreaks severely impact reef systems [1]. They can alter community structure [2,3], promote algal colonization [1,4], and affect fish population dynamics [5,6,7]. Outbreaks of A. planci reduce the aesthetic value of coral reefs, thereby negatively impacting economies that depend on tourism. To reduce the impact of these corallivores, costly control and eradication programs have been established in several countries [8,9]. Understanding the manner in which outbreak populations develop is critical for efficient management and conservation of coral reefs across the Indo-Pacific region

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call