Abstract

Triple-negative breast cancer (TNBC) is defined by the lack of the expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). It is characterized by aggressive behavior, poor prognosis and lack of targeted therapies. MicroRNA (miRNA) as a novel modulator of gene expression has played an important regulatory role in the malignancy. Dysregulation and/or mutation of the miRNAs may also contribute to the TNBC susceptibility since it is associated with the expression of ER, PR and HER2. Single nucleotide polymorphisms (SNPs) in miRNAs may be extremely relevant for TNBC. We tried to validate the hypothesis that genetic variations in miRNA are associated with TNBC development, and identify candidate biomarkers for TNBC susceptibility and clinical treatment. We screened the genetic variants in all miRNA genes listed in the public database miRBase and NCBI. A total of 23 common SNPs in 22 miRNAs, which tagged the known common variants in the Chinese Han people with a minor allele frequency greater than 0.05, were genotyped. This case-control study involved 191 patients with TNBC and 192 healthy female controls. Frequencies of SNPs were compared between cases and controls to identify the SNPs associated with TNBC susceptibility. No significant association was found between TNBC risk and the SNPs in the miRNA genes in the Chinese Han people (P>0.05), but this warrants further studies.

Highlights

  • Triple-negative breast cancer (TNBC) is defined as a subgroup of breast carcinomas that are negative for expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2(HER2) [1,2]

  • It is reported that African American and Hispanic women have a higher risk of TNBC, and African Americans have worse prognosis than any other ethnic groups [5,9], suggesting that genetic background may play an important role in TNBC and genetic variation would be a major risk for TNBC

  • TNBCs are generally very sensitive to chemotherapy; some types of TNBCs are known to be more aggressive with poor prognosis

Read more

Summary

Introduction

Triple-negative breast cancer (TNBC) is defined as a subgroup of breast carcinomas that are negative for expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2(HER2) [1,2]. It is reported that African American and Hispanic women have a higher risk of TNBC, and African Americans have worse prognosis than any other ethnic groups [5,9], suggesting that genetic background may play an important role in TNBC and genetic variation would be a major risk for TNBC. The residual 0.1% leads to several million spelling differences, with some of the variations posing dramatically higher risks of certain cancers and other diseases. These differences are known as polymorphisms, of which the most important type is the single nucleotide polymorphisms (SNPs). SNP is a DNA sequence variation that occurs when a single nucleotide (A, T, C, or G) in the genome sequence is altered

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.