Abstract
AbstractIn [60] N. Belnap presented an 8-element matrix for the relevant logic R with the following property: if in an implication A → B the formulas A and B do not have a common variable then there exists a valuation v such that v (A → B) does not belong to the set of designated elements of this matrix. A 6-element matrix of this kind can be found in: R. Routley, R.K. Meyer, V. Plumwood and R.T. Brady [82], Below we prove that the logics generated by these two matrices are the only maximal extensions of the relevant logic R which have the relevance property: if A → B is provable in such a logic then A and B have a common propositional variable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.