Abstract

Previous studies have reported that semantic richness facilitates visual word recognition (see, e.g., Buchanan, Westbury, & Burgess, 2001; Pexman, Holyk, & Monfils, 2003). We compared three semantic richness measures--number of semantic neighbors (NSN), the number of words appearing in similar lexical contexts; number of features (NF), the number of features listed for a word's referent; and contextual dispersion (CD), the distribution of a word's occurrences across content areas-to determine their abilities to account for response time and error variance in lexical decision and semantic categorization tasks. NF and CD accounted for unique variance in both tasks, whereas NSN accounted for unique variance only in the lexical decision task. Moreover, each measure showed a different pattern of relative contribution across the tasks. Our results provide new clues about how words are represented and suggest that word recognition models need to accommodate each of these influences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.