Abstract
Glycosylation is the most common form of post-translational modifications by which oligosaccharide side chains are covalently attached to specific residues of the core protein. Especially O-linked glycan structures like the glycosaminoglycans were found to contribute significantly to many (patho-)biological processes like inflammation, coagulation, cancer and viral infections. Glycans exert their function by interacting with proteins thereby changing the structure of the interacting proteins and consequently modulating their function. Given the complex nature of cell-surface and extracellular matrix glycan structures, this therapeutic site has been neglected for a long time, the only exception being the antithrombin III-glycan interaction which has been successfully targeted by unfractionated and low-molecular weight heparins for many decades. Due to the recent breakthrough in the '-ome' sciences, among them proteomics and glycomics, protein-glycan interactions became more amenable for therapeutic approaches so that novel inhibitors of this interaction are currently in preclinical and clinical studies. An overview of current approaches, their advantages and disadvantages, is given and the promising potential of pharmacologically interfering with protein-glycan interactions is highlighted here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.