Abstract

Replacement of lost and/or dysfunctional astrocytes via multipotent neural stem cell (NSC) and lineage-restricted neural progenitor cell (NPC) transplantation is a promising therapeutic approach for traumatic spinal cord injury (SCI). Cell transplantation in general offers the potential to replace central nervous system (CNS) cell types, achieve remyelination, deliver missing gene products, promote and guide axonal growth, modulate the host immune response, deliver neuroprotective factors, and provide a cellular substrate for bridging the lesion site, amongst other possible benefits. A host of cell types that differ in their developmental stage, CNS region and species of derivation, as well as in their phenotypic potential, have been tested in a variety of SCI animal models. Historically in the SCI field, most pre-clinical NSC and NPC transplantation studies have focused on neuronal and oligodendrocyte replacement. However, much less attention has been geared towards targeting astroglial dysfunction in the inured spinal cord, despite the integral roles played by astrocytes in both normal CNS function and in the diseased nervous system. Despite the relative lack of studies, cell transplantation-based targeting of astrocytes dates back to some of the earliest transplant studies in SCI animal models. In this review, we will describe the history of work involving cell transplantation for targeting astrocytes in models of SCI. We will also touch on the current state of affairs in the field, as well as on important future directions as we move forward in trying to develop this approach into a viable strategy for SCI patients. Practical issues such as timing of delivery, route of transplantation and immunesuppression needs are beyond the scope of this review.This article is part of a Special Issue entitled SI: Spinal cord injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.