Abstract

Huntington's disease (HD) is a monogenic neurodegenerative disorder that presents with progressive motor, behavior, and cognitive symptoms leading to early disability and mortality. HD is caused by an expanded CAG repeats in exon 1 of the huntingtin (HTT) gene. The corresponding genetic test allows a clinical, definite diagnosis in life and the identification of a fully penetrant mutation carrier in a premanifest stage. In addition to the development of symptomatic treatments that attempt to address unmet care needs such as apathy, irritability, and cognition, novel therapies that target pathways specific to HD biology are being developed with the intent of slowing disease progression. Among these approaches, HTT protein lowering therapies hold great promise. There are currently active programs using antisense oligonucleotides (ASOs), RNA interference, small-molecule splicing modulators, and zinc-finger protein transcription factor. Except for ASOs and RNA interference approaches, the remaining therapeutic strategies are at a preclinical stage of development. While the current therapeutic landscape in HD may bring an unparalleled change in the lives of people with HD and their families with the first-ever disease-modifying therapy, the evaluation of these therapies requires novel tools that enable a more efficient and expedited discovery and evaluative process. Examples are biomarkers targeting the HTT protein to measure target engagement or disease progression and rating scales more sensitive to the earliest clinical changes. These tools will be instrumental in the next phase of disease-modifying clinical trials in HD likely to target the phenoconversion period of the disease, including the prodromal HD stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call