Abstract

The aim of this work was to develop a novel targeted drug-loaded microbubble (MB) and to investigate its chemotherapy effect in vitro. Paclitaxel (PTX)-loaded lipid MBs were prepared by a mechanical vibration technique. The LyP-1, a breast tumor homing peptide, was coated onto the surface of PTX-loaded MBs through biotin-avidin linkage. The resulting targeted drug-loaded MBs were characterized and applied to ultrasound-assisted chemotherapy in breast cancer cells. Our results showed the ultrasonic MBs were able to achieve 43%–63% of drug encapsulation efficiency, depending on drug loading amount. The binding affinity assay indicated the attachment of targeted MBs to human MDA-MB-231 breast cancer cells was highly efficient and stable even with ultrasonic irradiation on. The cellular uptake efficiency of payload in targeted MBs was 3.71-, 4.95-, 7.43- and 7.66-fold higher than that of non-targeted MBs at the applied ultrasound time of 30, 60, 90 and 120 s, respectively. In addition, the cell proliferation inhibition assay showed the cell viability of targeted PTX-loaded MBs was significantly lower than that of non-targeted PTX-loaded MBs and non-targeted unloaded MBs when ultrasound was utilized. In conclusion, the study indicated the LyP-1-coated PTX-loaded MBs significantly increased the antitumor efficacy and can be used as a potential chemotherapy approach for ultrasound-assisted breast cancer treatment.(E-mail: hr.zheng@siat.ac.cn)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.