Abstract

Small cell lung cancer (SCLC) is an aggressive and exceptionally fatal disease. Unlike non- small cell lung cancer (NSCLC), no targetable genetic driver events have been identified in SCLC to date. Here, we investigate the function of RAR-related orphan receptor gamma (RORγ) and identified the anti-cancer activity of its natural inhibitor against SCLC and illustrate the underlying mechanism. We show that RORγ depletion affected cell growth both in 2-D cell proliferation and 3-D organoids formation. Natural marine product N-hydroxyapiosporamide (N-hydap) directly bound to RORγ and inhibited its transcriptional activity, leading to the blocking of transmission process of RORγ signaling. Gene expression profiling analysis revealed that N-hydap reprograms neuroendocrine fate via inhibiting RORγ activity in SCLC. Chromatin immunoprecipitation analysis showed that N-hydap strongly reduced RORγ occupancy and transcriptional activation-linked histone marks H3K27ac on the promoter and/or enhancer sites of neurogenesis markers gene including aurora kinase a (AURKA), delta like canonical Notch ligand 3 (DLL3) and tubulin beta 3 class III (TUBB3). Therapeutically, N-hydap exhibited a strong inhibitory effect on tumor growth and did not show significant toxicity in SCLC mice xenograft models. Taken together, RORγ could be an attractive target for SCLC and thus N-hydap can be a promising therapeutic drug candidate for SCLC by inhibiting the RORγ activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call