Abstract

We have recently reported that PML-RAR-induced misfolding of the N-CoR protein could be reversed by retinoic acid (RA), a therapeutic agent that promotes differentiation of acute promyelocytic leukemia (APL) cells. This finding suggests a role of misfolded N-CoR in the differentiation arrest of APL cells and highlights its significance as a potential molecular target in protein conformation-based therapy for APL. Based on this hypothesis, we investigated the therapeutic potential of several protein conformation modifiers on APL-derived cell lines NB4 and NB4-R1. Through a small-scale screening of these selected compounds, we identified genistein as a potent inhibitor of growth of both RA-sensitive and RA-resistant APL cells. Genistein inhibited the growth of NB4 cells through its collective regulatory effects on cell cycle progression, differentiation, and apoptosis. Genistein-induced apoptosis of NB4 cells was mediated by activation of caspase-9 and caspase-3 and was associated with a decrease in mitochondrial transmembrane potential and cytosolic release of cytochrome c. Genistein promoted differentiation of both RA-sensitive and RA-resistant NB4 cells and induced cell cycle arrest by blocking the G(2)-M transition. Genistein up-regulated the expression of PML and N-CoR proteins, promoted degradation of PML-RAR, and reorganized the microspeckled distribution of PML oncogenic domains to a normal dot-like pattern in NB4 cells. Moreover, genistein significantly reversed the PML-RAR-induced misfolding of N-CoR protein by possibly inhibiting the selective phosphorylation-dependent binding of N-CoR to PML-RAR. These findings identify genistein as a potent modifier of N-CoR protein conformation and highlights its therapeutic potential in both RA-sensitive and RA-resistant APL cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call