Abstract

We previously identified mesothelin (MSLN) as highly expressed in a significant fraction of acute myeloid leukemia (AML) but entirely silent in normal hematopoiesis, providing a promising antigen for immunotherapeutic targeting that avoids hematopoietic toxicity. Given that T cells genetically modified to express chimeric antigen receptors (CAR) are effective at eradicating relapsed/refractory acute lymphocytic leukemia, we developed MSLN-directed CAR T cells for preclinical evaluation in AML. The variable light (VL) and heavy (VH) sequences from the MSLN-targeting SS1P immunotoxin were used to construct the single-chain variable fragment of the standard CAR containing 41-BB costimulatory and CD3Zeta stimulatory domains. The preclinical efficacy of MSLN CAR T cells was evaluated against AML cell lines and patient samples expressing various levels of MSLN in vitro and in vivo. We demonstrate that MSLN is expressed on the cell surface of AML blasts and leukemic stem cell-enriched CD34+CD38- subset, but not on normal hematopoietic stem and progenitor cells (HSPC). We further establish that MSLN CAR T cells are highly effective in eliminating MSLN-positive AML cells in cell line- and patient-derived xenograft models. Importantly, MSLN CAR T cells can target and eradicate CD34+CD38- cells without impacting the viability of normal HSPCs. Finally, we show that CAR T-cell functionality can be improved by inhibition of the ADAM17 metalloprotease that promotes shedding of MSLN. These findings demonstrate that MSLN is a viable target for CAR T-cell therapy in AML and that inhibiting MSLN shedding is a promising approach to improve CAR T-cell efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call