Abstract
Induction of collateral development to improve tissue perfusion is a promising approach for the treatment of arterial occlusive diseases. Several growth factors and cells have been reported to increase collateral circulation; however, the appropriate site for the delivery of these factors and cells is unclear. In this study, we identified the delivery site for growth factor in a rabbit model of limb ischemia and evaluated whether specific delivery of basic fibroblast growth factor (bFGF) to this site enhanced collateral augmentation. The left femoral artery of Japanese white rabbits was excised to induce limb ischemia. Twenty-eight days thereafter, angiograms were obtained to identify the typical pattern of collateral development in this model. Subsequently, bFGF (100 μg) was selectively injected into the left coccygeofemoral muscle (coccygeo group) or adductor muscle (adductor group), major thigh muscles in proximity. Collateral development was evaluated at 28 days after injection, and its mechanism was assessed by immunologic and morphometric analyses of muscle samples. Angiographic evaluation of this model revealed that after femoral artery excision, collateral vessels generally developed in the left coccygeofemoral muscle, whereas few collateral vessels were detected in the left adductor muscle. At 28 days after injection, calf blood pressure ratio, defined as left pressure to right pressure, was significantly higher in the coccygeo group than in the adductor group (0.85 ± 0.05 vs 0.69 ± 0.05, respectively; P < .01). Similar results were observed in blood flow through the internal iliac artery (resting: 24.6 ± 6.1 vs 17.4 ± 8.0 mL/min, P < .01; maximum: 47.4 ± 12.3 vs 33.2 ± 10.7 mL/min, P < .01) and in the angiographic score (0.67 ± 0.13 vs 0.39 ± 0.11; P < .01). Immunologic analyses of the coccygeofemoral muscle at day 3 showed marked expressions of Ki-67, monocyte chemotactic protein 1, and FGF receptor 1 in the coccygeo group compared with the adductor group. Morphometric analyses of the same muscle at day 14 also revealed that collateral vessel density and wall thickness were significantly increased in the coccygeal group compared with the adductor group. These findings demonstrated that selective bFGF delivery to the coccygeofemoral muscle markedly improved collateral development and limb perfusion compared with delivery to the adductor muscle, suggesting that site selection is important in increasing therapeutic efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.