Abstract

A series of 1,4-dihydropyridines have been prepared from a three-component one-pot condensation reaction of β-diketonates, an aromatic aldehyde, and ammonium acetate under microwave irradiation. The reaction is performed using crystalline nano-ZnO in ethanol under microwave irradiation (CEM discover). A wide range of functional groups was tolerated in the developed protocol. The present methodology offers several advantages such as simple procedure, greener condition, excellent yields and short reaction time. The synthesized compounds were evaluated for DNA photocleavage, SAR analysis and molecular docking studies. The compound (4b, 4c, 4 h, 4i, 4n and 4o) showed potent DNA cleavage activities compared to other derivatives. The molecular interactions of the active compounds within the binding site of B-DNA were studied through molecular docking simulations; the compound (4b, 4c, 4 h, 4i, 4n and 4o) showed good docking interaction with minimum binding energies. All synthetic compounds were characterized by different spectroscopic techniques.

Highlights

  • Facile and efficient synthesis of biological active molecules is one of the main objectives of organic and medicinal chemistry

  • In continuation of our ongoing research work on microwave assisted synthesis of nano materials [11, 12] we have found that, nano-crystalline metal oxides have attracted considerable attention of synthetic and medicinal chemists because of their high catalytic activity and reusability [13–25]

  • The other derivatives of 1,4-DHP formed less H-bond interaction with the DNA due to the orientation of aromatic ring involved in van der Waals interactions (Wireframe model) and flat hydrophobic regions of the binding sites of DNA (Table 3). These results demonstrated the in silico molecular docking studies of 1,4-DHPs with B-DNA suggested that 1,4-DHPs possess the potential to disturb hydrophobic and H-bond interactions thereby affecting the stability of attachment of B-DNA, and may be effective for cancer cell lines

Read more

Summary

Introduction

Facile and efficient synthesis of biological active molecules is one of the main objectives of organic and medicinal chemistry. The hydrogen bond interaction of 4c and 4d with key residues in active site inside the helical structure of DNA In this model, it is clearly indicated that the compound 4c formed hydrogen bonded between the –OH and N1 of thymine, which is DT7 and DT19 with the bond length of 2.02 and 2.05 Ǻ respectively. The other derivatives of 1,4-DHP formed less H-bond interaction with the DNA due to the orientation of aromatic ring involved in van der Waals interactions (Wireframe model) and flat hydrophobic regions of the binding sites of DNA (Table 3) These results demonstrated the in silico molecular docking studies of 1,4-DHPs with B-DNA suggested that 1,4-DHPs possess the potential to disturb hydrophobic and H-bond interactions thereby affecting the stability of attachment of B-DNA, and may be effective for cancer cell lines

Materials and method
General procedure for the preparation of ZnO-Nps
General procedure for the synthesis of 1,4-DHP by microwave method
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.