Abstract

Both genetic and environmental factors contribute to the pathogenesis of type 2 diabetes, and it is critical to understand the interplay between these factors in the regulation of insulin secretion and insulin sensitivity to develop effective therapeutic interventions for type 2 diabetes. For the past several years, studies on the mammalian NAD-dependent protein deacetylase SIRT1 and systemic NAD biosynthesis mediated by nicotinamide phosphoribosyltransferase (NAMPT) have demonstrated that these two regulatory components together play a critical role in the regulation of glucose homeostasis, particularly in the regulation of glucose-stimulated insulin secretion in pancreatic beta cells. These components also contribute to the age-associated decline in beta cell function, which has been suggested to be one of the major contributing factors to the pathogenesis of type 2 diabetes. In this review article, the roles of SIRT1 and NAMPT-mediated systemic NAD biosynthesis in glucose homeostasis and the pathophysiology of type 2 diabetes will be summarized, and their potential as effective targets for the treatment and prevention of type 2 diabetes will be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call