Abstract

Knee osteoarthritis (OA) is the main cause of leg pain in middle-aged and elderly individuals. Hyaluronic acid (HA), as well as curcuminoid, has been used in the treatment of knee OA. In the present study, HA/chitosan nanoparticles (CNPs) were prepared for the delivery of curcuminoid, in order to investigate whether HA and curcuminoid can act synergistically as a better treatment option. The knee OA model was established by the Hulth method, and a knee OA chondrocyte model was constructed by the co-induction of interleukin-1β and tumor necrosis factor (TNF)-α. The drug loading capacity of HA/CNP for the delivery of curcuminoid was measured by an ultraviolet assay, and the cytotoxicity to chondrocytes was measured by an MTT assay. Collagen II was detected by immunofluorescence, and the expression levels of nuclear factor (NF)-κB and inflammation-related genes in cartilage tissue and chondrocytes were detected. Chondrocyte proliferation was determined by an EdU assay, and chondrocyte apoptosis was determined by flow cytometry. The Mankin pathological score of the Outerbridge classification was obtained. The results demonstrated that the optimum drug loading capacity of HA/CNP for the delivery of curcuminoid was 38.44%, with a good sustained release function. HA/CNP treatment resulted in inhibition of the NF-κB pathway, as well as the expression of matrix metalloproteinase (MMP)-1 and MMP-13, but it increased collagen II expression. HA/CNP for the delivery of curcuminoid significantly decreased the Outerbridge classification and Mankin pathological scores to close to normal until the 4th week. Furthermore, it was also observed that all the effects of HA/CNP on the delivery of curcuminoid were more prominent compared with the effects of HA or curcuminoid treatment individually. Taken together, these findings demonstrated that HA/CNP for the delivery of curcuminoid may suppress inflammation and chondrocyte apoptosis in knee OA via repression of the NF-κB pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.