Abstract

ObjectiveTreatment of pulmonary fibrosis caused by paraquat (PQ) poisoning remains problematic. Amitriptyline (AMT) has multiple pharmacological effects. Here we investigated the anti-fibrotic effect of AMT on PQ-induced pulmonary fibrosis and its possible mechanism. MethodsC57BL/6 mice were randomly divided into control, PQ, PQ + AMT and AMT groups. Histopathology of the lungs, blood gas analysis, and levels of hydroxyproline (HYP), transforming growth factor β1 (TGF-β1) and interleukin 17 (IL-17) were measured. The siRNA transfection inhibited caveolin-1 in A549 cells, which induced epithelial-mesenchymal transition (EMT) by PQ and followed intervention with AMT. E-cadherin, N-cadherin, α-smooth muscle actin (α-SMA) and caveolin-1 were studied by immunohistochemistry and western blot analysis. The apoptosis rate was measured by flow cytometry. ResultsCompared with the PQ group, the PQ + AMT group displayed mild pathological changes in pulmonary fibrosis, lower HYP, IL-17 and TGF- β1 levels in lung, but high TGF- β1 in serum. Levels of N-cadherin and α-SMA in the lungs were significantly decreased, but caveolin-1 was increased, while SaO2 and PaO2 levels were higher. Compared with the PQ group, the apoptosis rate, N-cadherin and α-SMA levels in A549 cells were significantly decreased after PQ treatment and high dose AMT intervention (p < 0.01). The expressions of E-cadherin, N-cadherin and α-SMA in the PQ-induced cells transfected with caveolin-1 siRNA or siControl RNA were significantly different (p < 0.01), but the apoptosis rate was unaltered. ConclusionAMT inhibited PQ-induced EMT in A549 cells and improved lung histopathology and oxygenation in mice by up-regulating caveolin-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call