Abstract

Adenosine is a naturally occurring nucleoside and an essential component of the energy production and utilization systems of the body. Adenosine is formed by the degradation of adenosine-triphosphate (ATP) during energy-consuming processes. Adenosine regulates numerous physiological processes through activation of four subtypes of G-protein coupled membrane receptors viz. A1, A2A, A2B and A3. Its physiological importance depends on the affinity of these receptors and the extracellular concentrations reached. ATP acts as a neurotransmitter in both peripheral and central nervous systems. In the peripheral nervous system, ATP is involved in chemical transmission in sensory and autonomic ganglia, whereas in central nervous system, ATP, released from synaptic terminals, induces fast excitatory postsynaptic currents. ATP provides the energetics for all muscle movements, heart beats, nerve signals and chemical reactions inside the body. Adenosine has been traditionally considered an inhibitor of neuronal activity and a regulator of cerebral blood flow. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosinerelated drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases. This review will summarize the therapeutic potential and recent SAR and pharmacology of adenosine and its receptor agonists and antagonists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.