Abstract

BackgroundAcute liver injury (ALI) often precipitates severe liver function impairment and is associated with high mortality rates. Traditional Chinese Medicine (TCM) has demonstrated efficacy in mitigating hepatic damage by exhibiting anti-inflammatory effects, enhancing antioxidant activity, and modulating gut microbiota (GM). Numerous studies have identified similar or identical bioactive compounds within the Cornus Officinalis Fruit Coreon(COFO) and its flesh. Notably, Cornus Officinalis has been shown to possess potent hepatoprotective properties. However, studies on the pharmacological effects and mechanism of action of COFO for hepatoprotection have received little attention. PurposeTo elucidate the mechanisms underlying the COFO effect in ALI by integrating GM gene sequencing, quantifying Short-Chain Fatty Acids (SCFAs), and examining relevant signaling pathways. Materials and MethodsA rat model for carbon tetrachloride (CCl4)-induced ALI was established, and the best liver protective components of COFO were selected by pathological observation and biochemical determination. The therapeutic efficacy of COFO in mitigating liver injury was elucidated through an integrated approach that included network pharmacology, biochemical indexes, 16S rDNA sequencing analyses, short-chain fatty acids, Western blotting analysis of protein levels, and immunohistochemical evaluations. ResultsPharmacological evaluation established that the n-butanol fraction (CNBP) provided optimal hepatoprotective effects. Firstly, the chemical constituents of CNBP were characterized, and its principal anti-ALI targets, such as ALI, AKT1, TNF, and IL-6, were identified through network pharmacology analysis. Secondly, experimental validation revealed that CNBP may enhance the genetic diversity of the GM, augmenting the diversity of the microbial community, increasing the levels of three SCFAs, and activating key proteins in the AKT/Nrf2 signaling pathway (AKT1, TNF-α, IL-6, NF-κB p65, Nrf2, and HO-1). Consequently, CNBP exhibited hepatoprotective effects, with antioxidative and anti-inflammatory properties. ConclusionCNBP may mitigate GM-induced disturbances, augment the levels of three SCFAs, activate the AKT/Nrf2 signaling pathway, and exhibit antioxidant and anti-inflammatory effects, thereby conferring hepatoprotective benefits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call