Abstract

Staphylococcus aureus is a common cause of severe infections, and its widespread antibiotic resistance necessitates search for alternative therapies, such as inhibition of virulence. As S. aureus produces multiple individual virulence factors, inhibition of an entire regulatory system might provide better effects than targeting each virulence factor separately. Herein, we describe two novel inhibitors of S. aureus two-component regulatory system ArlRS: 3,4'-dimethoxyflavone and homopterocarpin. Unlike other putative ArlRS inhibitors previously identified, these two compounds were effective and specific. In vitro kinase assays indicated that 3,4'-dimethoxyflavone directly inhibits ArlS autophosphorylation, while homopterocarpin did not exhibit such effect, suggesting that two inhibitors work through distinct mechanisms. Application of the inhibitors to methicillin-resistant S. aureus (MRSA) in vitro blocked ArlRS signaling, inducing an abnormal gene expression pattern that was reflected in changes at the protein level, enhanced sensitivity to oxacillin, and led to the loss of numerous cellular virulence traits, including the ability to clump, adhere to host ligands, and evade innate immunity. The pleiotropic antivirulence effect of inhibiting a single regulatory system resulted in a marked therapeutic potential, demonstrated by the ability of inhibitors to decrease severity of MRSA infection in mice. Altogether, this study demonstrated the feasibility of ArlRS inhibition as anti-S. aureus treatment, and identified new lead compounds for therapeutic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.