Abstract

Dyslipidemia, characterized by abnormal lipid levels in the blood, significantly escalates the risk of atherosclerotic cardiovascular disease and requires effective treatment strategies. While existing therapies can be effective, long-term adherence is often challenging. There has been an interest in developing enduring and more efficient solutions. In this context, gene editing, particularly clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology, emerges as a groundbreaking approach, offering potential long-term control of dyslipidemia by directly modifying gene expression. This review delves into the mechanistic insights of various gene-editing tools. We comprehensively analyze various pre-clinical and clinical studies, evaluating the safety, efficacy, and therapeutic implications of gene editing in dyslipidemia management. Key genetic targets, such as low-density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like protein 3 (ANGPTL3), apolipoprotein C3 (APOC3), and lipoprotein (a) (Lp(a)), known for their pivotal roles in lipid metabolism, are scrutinized. The paper highlights the promising outcomes of gene editing in achieving sustained lipid homeostasis, discusses the challenges and ethical considerations in genome editing, and envisions the future of gene therapy in revolutionizing dyslipidemia treatment and cardiovascular risk reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.