Abstract

The clinical outcome of radiation therapy is restricted due to the acquired radio-resistance of a subpopulation of tumour cells that may cause tumour relapse and distant metastasis. While the effects of ionizing radiation (IR) such as DNA damage and cell stress are well-documented, the potential role of IR in inducing invasive potential in cancer cells has not been broadly studied, therefore we aimed to investigate it in this study. MCF-7 cells irradiated with 0 Gy (control) or 2 Gy X-ray therapeutic doses of IR were assessed for cell viability, percentage of apoptotic cells, and reactive oxygen species (ROS) levels, DNA fragmentation, Matrigel invasion, assessment of epithelial-mesenchymal transition (EMT) markers and Helix pomatia agglutinin (HPA) binding at 30 min, 4- or 24-h post-IR. Reduction in cell viability, increase in apoptotic cells, ROS positive cells, and DNA fragmentation were observed, while functional invasiveness and EMT were exacerbated together with altered glycosylation in MCF-7 cells irradiated with 2 Gy X-ray compared to control cells. These findings indicate that despite the detrimental effects of 2 Gy X-ray IR on MCF-7 cells, a subpopulation of cells may have gained increased invasive potential. The exacerbated invasive potential may be attributed to enhanced EMT and altered glycosylation. Moreover, deregulation of transforming growth factor-beta (TGF-β) following IR may be one of the elements responsible for these changes, as it lies in the intersection of these invasion-promoting cell processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.