Abstract

This study reports on the activity of thermosensitive liposomes (TSLs) incorporating different HSPC ratios in DPPC/MSPC/PEG2000-DSPE matrix (90/10/4) plus mild hyperthermia (HT) (42 °C). TSLs were loaded with a poorly membrane permeable anticancer drug, cisplatin, through the passive equilibration method. The addition of HSPC to the corresponding DPPC lipid matrix increased the transition temperature. In vitro data demonstrated >90% cisplatin leakage from nanosized DPPC 90-lyso-TSL (LTSL) within 10 min at 42 °C, while other TSLs bearing HSPC showed greater stability. The plasma kinetics of cisplatin demonstrated higher cisplatin leakage from DPPC 90-LTSL in the first 4 h (from 17.4 to 0.4 μg/mL) compared to other formulations. Indeed, increasing HSPC fraction in liposome bilayers significantly improved drug retention in blood. Though DPPC 90-LTSL plus one-step HT was expected to provide a unique drug release, the premature drug leakage as well as the likely wash-back of a great portion of drug into the blood circulation resulted in reduced survival. On the other hand, stabilized DPPC 30/HSPC 60/MSPC 10/PEG2000-DSPE 4 liposomes plus two-step HT greatly enhanced the survival of animals. In particular, the improved delivery of cisplatin through stabilized DPPC 30/HSPC 60/MSPC 10/PEG2000-DSPE 4 liposomes in two-step mild HT enhanced antitumor efficacy compared to other formulations. Thus, prolonged exposure of cancer cells to cisplatin through stabilized liposomes would be an efficient approach in improving the survival of animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call