Abstract

Antimicrobial peptides (AMPs), ascribed to their decreased microbial drug resistance, can be employed as potent small-molecule drugs to treat various diseases. AMPs have been conserved in a wide variety of living organisms as a result of the evolution of the innate immune system. Notably, Ocellatin AMPs derived from South American Leptodactylus genus frogs have a higher therapeutic efficacy against infections. Inhibitory activity of Ocellatin AMPs against bacterial membranes is determined by the dynamic interplay of peptide cationic, hydrophobicity, helicity, and amphipathicity. Another advantage of using AMPs as drug candidates is their cell selectivity that is non-hemolytic to human cells. Ocellatin AMPs with optimal hydrophobic residues would therefore be a recommended therapeutic candidate. Henceforth, such AMPs could be used as an alternative strategy in curbing antimicrobial resistance. It is noteworthy that the therapeutic efficacy of Ocellatins is to be appreciated for its broad application as it has been proved to be active against several humans, animal, and plant bacterial pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call