Abstract

10061 Background: Although a number of advances in ovarian cancer treatment have occurred in the last decade, most patients will experience a recurrence after standard therapies. Recently, virotherapy has been proposed as a new therapeutic approach for ovarian cancer. Conditionally replicative adenovirus (CRAd) contains tumor-specific promoters that restrict virus replication to cancer cells and has shown particular promise as oncolytic viral agents. However, the lack of a tumor-volume monitoring system hinders the evaluation of CRAd impact on cancer treatment. Therefore, methods for analyzing CRAd efficacy and tumor response are required. Mesothelin, a cell surface glycoprotein, is overexpressed in ovarian cancer but not in normal ovarian tissues. The purpose of this study was to explore the therapeutic utility of a mesothelin promoter-based CRAd in a murine model of ovarian cancer, using a non-invasive biological imaging system. Methods: We constructed a mesothelin promoter based CRAd which also contains a modified fiber (Ad5/3 fiber) previously shown to improve infectivity of many ovarian cancer cells (Ad5/3MSLN). Viral replication and oncolysis were assessed in a panel of ovarian cancer cell lines. To test the oncolytic efficacy of Ad5/3MSLN in murine model, firefly luciferase-expressing SK-OV-3-luc cells were injected intraperitoneally (i.p.), followed by an i.p. injection of viruses. Then, bioluminescence imaging of tumor luciferase activity was carried out. Results: Ad5/3MSLN achieved up to 10,000-fold higher cell killing effect and up to 120-fold higher levels of viral replication in all ovarian cancer cell lines tested, compared to wild type Ad5. In vivo tumor imaging confirmed that Ad5/3MSLN significantly inhibited tumor growth, while the untreated mice had rapid tumor growth (p<0.05). Survival with Ad5/3MSLN was significantly enhanced when compared with no virus, or wild type Ad5-treated group (p<0.05). Conclusions: The robust replication, oncolysis, and in vivo therapeutic efficacy of Ad5/3MSLN demonstrated that this CRAd is a promising candidate for treating ovarian cancer. Importantly, we have established an in vivo non-invasive imaging system, which has allowed repeated and longitudinal measurements of tumor growth after CRAd treatment. No significant financial relationships to disclose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call