Abstract

Convection-enhanced delivery (CED) with various drug carrier systems has recently emerged as a novel chemotherapeutic method to overcome the problems of current chemotherapies against brain tumors. Polymeric micelle systems have exhibited dramatically higher in vivo antitumor activity in systemic administration. This study investigated the effectiveness of CED with polymeric micellar doxorubicin (DOX) in a 9L syngeneic rat model. Distribution, toxicity, and efficacy of free, liposomal, and micellar DOX infused by CED were evaluated. Micellar DOX achieved much wider distribution in brain tumor tissue and surrounding normal brain tissue than free DOX. Tissue toxicity increased at higher doses, but rats treated with micellar DOX showed no abnormal neurological symptoms at any dose tested (0.1-1.0 mg/ml). Micellar DOX infused by CED resulted in prolonged median survival (36 days) compared with free DOX (19.6 days; p = 0.0173) and liposomal DOX (16.6 days; p = 0.0007) at the same dose (0.2 mg/ml). This study indicates the potential of CED with the polymeric micelle drug carrier system for the treatment of brain tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.