Abstract
The spread of multi-drug resistant (MDR) bacteria has posed a threat to the development of aquaculture. Due to its effective bactericidal ability, phage therapy has been considered as an alternative to antibiotics to reduce infection caused by MDR bacteria. In this study, two Edwardsiella piscicida phages were newly-isolated and characterized to prevent or treat infection in aquaculture. The phages were designated as vB_EpM_ZHS and vB_EpP_ZHX belonging to Myoviridae and Podoviridae families, respectively, in terms of genome sequence and morphology analyses. The combination of vB_EpM_ZHS and vB_EpP_ZHX improved the therapeutic efficacy both in vitro and in vivo. The phage cocktail significantly inhibited bacterial growth in vitro and decreased approximately 40% of mortality rate and an order of magnitude of bacterial burden in zebrafish and turbot infected by E. piscicida. Moreover, the phage cocktail increased transcription levels of tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and alleviated inflammatory levels in the hindgut and spleen of turbots. The results indicate that the phage has a promising potential for therapeutic use against E. piscicida as the antimicrobial alternative to antibiotics in aquaculture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.