Abstract

BackgroundLeishmaniasis is a neglected infectious disease caused by protozoa of the genus Leishmania. The disease generally manifests as characteristic skin lesions which require lengthy treatment with antimonial drugs that are often associated with adverse side effects. Therefore, a number of studies have focused on natural compounds as promising drugs for its treatment. This study aimed to evaluate the effects of larval excretion/secretion products (ES) of Lucilia sericata in crude and fractionated forms on Leishmania major, by using in vitro and in vivo models.MethodsThe in vitro experiments involved evaluation of ES on both promastigotes and macrophage-engulfed amastigotes, whereas the in vivo experiments included comparative treatments of skin lesions in L. major-infected mice with Eucerin-formulated ES and Glucantime.ResultsThe half maximal inhibitory concentrations of the crude ES, > 10-kDa ES fraction, < 10-kDa ES fraction, and Glucantime were 38.7 μg/ml, 47.6 μg/ml, 63.3 μg/ml, and 29.1 μg/ml, respectively. Significant differences were observed between percentage viabilities of promastigotes treated with the crude ES and its fractions compared with the negative control (P < 0.0001). The crude ES was more effective on amastigotes than the two ES fractions at 300 μg/ml. The macroscopic measurements revealed that the reduction of lesion size in mice treated with the crude ES followed quicker cascades of healing than that of mice treated with Glucantime and the ES fractions.ConclusionsThe present study showed that the larval ES of L. sericata in both crude and fractionated forms are effective for both intracellular and extracellular forms of L. major. Also, the ES exert both topical and systemic effects on mice experimentally infected with L. major.Graphical abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.