Abstract

Bone marrow mesenchymal stem cells (BMSCs) are non-hematopoietic multipotent stem cells capable of differentiating into mature cells. Isoquercetin, an extract from natural sources, has shown promise as a potential treatment for osteoporosis. To investigate the therapeutic effects of isoquercetin on osteoporosis, bone marrow mesenchymal stem cells (BMSCs) were cultured in vitro, and osteogenesis or adipogenesis was induced in the presence of isoquercetin for 14 days. We evaluated cell viability, osteogenic and adipogenic differentiation, as well as mRNA expression levels of Runx2, Alpl, and OCN in osteoblasts, and mRNA expression levels of Pparγ, Fabp4, and Cebpα in adipocytes. The results showed that isoquercetin dose-dependently increased cell viability and promoted osteogenic differentiation, as evidenced by Alizarin Red and alkaline phosphatase staining and mRNA expression levels of Runx2, Alpl, and OCN in osteoblasts (P < 0.05). In contrast, isoquercetin inhibited adipogenic differentiation and decreased the mRNA expression levels of Pparγ, Fabp4, and Cebpα in adipocytes (P < 0.05). In vivo, isoquercetin treatment increased bone quantity and density in an osteoporosis model mice group, as determined by μCT scanning and immunohistochemistry (P < 0.05). These findings suggest that isoquercetin may have therapeutic potential for osteoporosis by promoting the proliferation and differentiation of BMSCs towards osteoblasts while inhibiting adipogenic differentiation.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.