Abstract
Chronic changes following radiotherapy include alterations in tissue-resident stem cells and vasculatures, which can lead to impaired wound healing. In this study, novel recombinant human collagen peptide (rhCP) scaffolds were evaluated as a biomaterial carrier for cellular regenerative therapy. Human adipose-derived stem cells (hASCs) were successfully cultured on rhCP scaffolds. By hASC culture on rhCP, microarray assay indicated that expression of genes related to cell proliferation and extracellular matrix production was upregulated. Pathway analyses revealed that signaling pathways related to inflammatory suppression and cell growth promotion were activated as well as signaling pathways consistent with some growth factors including vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta, although gene expression of these growth factors was not upregulated. These findings suggest the rhCP scaffold showed similar biological actions to cytokines regulating cell growth and immunity. In subsequent impaired wound healing experiments using a locally irradiated (20 Gray) mouse, wound treatment with rhCP sponges combined with cultured hASCs and human umbilical vein endothelial cells accelerated wound closure compared with wounds treated with rhCP with hASCs alone, rhCP only, and control (dressing alone), with better healing observed according to this order. These results indicating the therapeutic value of rhCP scaffolds as a topical biomaterial dressing and a biocarrier of stem cells and vascular endothelial cells for regenerating therapies. The combination of rhCP and functional cells was suggested to be a potential tool for revitalizing stem cell-depleted conditions such as radiation tissue damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Tissue Engineering and Regenerative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.