Abstract

158 Background: Interleukin (IL)-15 is a key regulator of T cell homeostasis with activity in cancer and a favorable toxicity profile compared to IL-2. IL-15 stimulates the proliferation and effector differentiation of CD8+T cells, and the proliferation and activation of natural killer (NK) cells. We observed IL-15 upregulation by gene arrays in radiotherapy (RT)-treated TSA mouse breast cancer, suggesting that it may play a role in RT-induced anti-tumor immunity. However, the upregulation was modest prompting us to test the hypothesis that administration of IL-15 may enhance in situ vaccination by RT. Methods: BALB/c mice with established poorly immunogenic TSA tumors were sham-treated, treated with tumor-targeted RT (8GyX3 days), IL-15 given peri-tumorally (2 ug/mouse/day for 10 days) starting on the first day of RT, and RT+IL-15, and monitored for tumor growth and survival. Tumor infiltrating lymphocytes (TIL) were analyzed by flow cytometry and immunostaining. In some experiments, Batf3-/-mice were used as tumor recipient. Results: IL-15 by itself was ineffective, but it significantly increased tumor control by RT (p=0.0007, RT versus RT+IL-15) leading to complete responses in 50% of the mice, most of them durable. Analysis of TILs showed significantly increased NK cells (CD45+ CD3- DX5+) in tumors treated with RT+IL-15 (p<0.0004 versus sham-treated; p<0.02 versus RT). NK cells were also more activated as indicated by expression of CD122 and CD137. Depletion of NK cells completely abrogated the therapeutic effect of the combination, while CD8 T cell depletion reduced tumor control and rate of complete regression. Interestingly, Batf3-/- mice, which lack CD103+ DCs, showed reduced response to RT+IL-15 compared to WT mice. Conclusions: Data suggest that local IL-15 with RT is an effective strategy to induce anti-tumor immunity to poorly immunogenic breast cancer. NK cells are critical mediators of the response, and may act by both killing tumor cells and promoting priming of CD8 T cells. Experiments are ongoing to determine the mechanisms of durable complete responses. <footer>Acknowledgments: IL-15 was provided by NCI BRB. Garcia-Martinez E was supported by GEICAM grant.</footer>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.