Abstract

Radiation-induced oral mucositis represents an influential factor in cancer patients’ accepted radiation therapy, especially in head and neck cancer. This research investigates the treatment effect of Ecdysterone (a steroid derived from the dry root of Achyranthes bidentate) and Paeonol (a compound derived from Cortex Moutan) on radiation-induced oral mucositis and possible underlying mechanisms. Concisely, 20 Gy of X-rays (single-dose) irradiated the cranial localization in rats for the modeling of oral mucositis. The therapeutic effects of Ecdysterone-Paeonol oral cavity directly administered on radiation-induced oral mucositis were investigated by weight changes, direct observations, visual scoring methods, ulcer area/total area, and basic recovery days. Assessments of tumor necrosis factor α and interleukin-6 were performed to evaluate the inflammatory cytokines secretion in the damaged areas of tongues harvested post-treatment, and changes in signaling pathways were investigated by Western blotting. System Drug Target (SysDT) methods revealed the targets of Ecdysterone-Paeonol in order to support compound-target network construction. Four representative targets with different functions were chosen. The binding interactions between the compound and receptor were evaluated by molecular docking to investigate the binding affinity of the ligand to their protein targets. Ecdysterone-Paeonol, administered orally, effectively improved radiation-induced oral mucositis in rats, and the therapeutic effect was better than Ecdysterone administered orally on its own. In this study, calculational chemistry revealed that Ecdysterone-Paeonol affected 19 function targets associated with radiation-induced oral mucositis, including apoptosis, proliferation, inflammation, and wound healing. These findings position Ecdysterone-Paeonol as a potential treatment candidate for oral mucositis acting on multiple targets in the clinic.

Highlights

  • Radiation-induced oral mucositis represents an influential factor in cancer patients’ accepted radiation therapy, especially in head and neck cancer

  • Radiation-induced oral mucositis (RIOM), a normal oral cavity tissue injury resulting from radiotherapy, represents an influential factor in cancer patients’ accepted radiation therapy, especially in head and neck cancer patients

  • Ecdysterone-Paeonol Alleviates the Development of Radiation-Induced Oral Mucositis, and the Treatment Effect is Better than Ecdysterone Treatment Alone

Read more

Summary

Introduction

Radiation-induced oral mucositis represents an influential factor in cancer patients’ accepted radiation therapy, especially in head and neck cancer. This research investigates the treatment effect of Ecdysterone (a steroid derived from the dry root of Achyranthes bidentate) and Paeonol (a compound derived from Cortex Moutan) on radiation-induced oral mucositis and possible underlying mechanisms. The therapeutic effects of Ecdysterone-Paeonol oral cavity directly administered on radiation-induced oral mucositis were investigated by weight changes, direct observations, visual scoring methods, ulcer area/total area, and basic recovery days. Calculational chemistry revealed that Ecdysterone-Paeonol affected 19 function targets associated with radiation-induced oral mucositis, including apoptosis, proliferation, inflammation, and wound healing. These findings position Ecdysterone-Paeonol as a potential treatment candidate for oral mucositis acting on multiple targets in the clinic

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call