Abstract
Organosulfur compounds, such as L-cysteine, allicin and other sulfur-containing organic compounds in Allium species, have been proposed to possess many important physiological and pharmacological functions. A novel L-cysteine derivative, t-Butyl S-allylthio-L-cysteinate (5P39), was designed and synthesized by combining L-cysteine derivative and allicin pharmacophore through a disulfide bond. This study aimed to explore the effects and mechanisms of 5P39 on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. At the experimental concentration (5, 10 and 20 μM), 5P39 suppressed the excessive secretion of nitric oxide (NO) and interleukin-6 (IL-6) in mice peritoneal macrophages stimulated by LPS. A mouse model of ALI was established by tracheal instillation of LPS for 2 h before 5P39 (30 and 60 mg/kg) administration. The results showed that 5P39 treatment down-regulated the wet/dry weight ratio (W/D ratio) of lungs and reduced the protein concentration, the number of total cells as well as the myeloperoxidase (MPO) activity in bronchoalveolar lavage fluid (BALF). 5P39 administration improved the histopathological changes of lungs in ALI mice with the decreased levels of pro-inflammatory cytokines in BALF. The inhibitory effects of 5P39 on the toll-like receptor 4 (TLR4) expression and macrophages accumulation in lung tissues were observed by immunohistochemistry. Additionally, 5P39 significantly attenuated the LPS-activated high expression of key proteins in TLR4/MyD88 signaling pathway. Taken together, the present study showed that 5P39 effectively alleviate the severity of ALI, and its mechanism might relate to the inhibition of LPS-activated TLR4/MyD88 signaling pathway, demonstrating a promising potential for further development into an anti-inflammatory drug candidate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.