Abstract

Staphylococcal enterotoxin B (SEB) and related superantigenic toxins are potent stimulators of the immune system and cause a variety of diseases in humans, ranging from food poisoning to toxic shock. These toxins bind directly to major histocompatibility complex (MHC) class II molecules on antigen-presenting cells and specific Vβ regions of T-cell receptors (TCR), resulting in hyperactivation of both monocytes/macrophages and T lymphocytes. Activated host cells produce massive amounts of proinflammatory cytokines and chemokines, activating inflammation and coagulation, causing clinical symptoms that include fever, hypotension, and shock. This review summarizes the in vitro and in vivo effects of staphylococcal superantigens, the role of pivotal mediators induced by these toxins in the pathogenic mechanisms of tissue injury, and the therapeutic agents to mitigate the toxic effects of superantigens.

Highlights

  • Staphylococcal enterotoxin B (SEB) and related superantigenic toxins are potent stimulators of the immune system and cause a variety of diseases in humans, ranging from food poisoning to toxic shock

  • Staphylococcus aureus, a ubiquitous gram-positive coccus, produces several exotoxins: staphylococcal enterotoxins A through R (SEA-SER), and toxic shock syndrome toxin 1 (TSST-1), which contribute to its ability to cause disease in humans and laboratory animals [1,2,3,4,5,6,7,8]

  • Superantigens in the SEA subfamily can bind to both and chains of major histocompatibility complex (MHC) class II, interacting with the OB fold and -grasp domain, respectively. This mode of superantigen and MHC class II interaction enables the toxin to bind to both sides of the molecule and cross-link MHC class II on antigen-presenting cells (APC) [40]

Read more

Summary

Overview

Staphylococcus aureus, a ubiquitous gram-positive coccus, produces several exotoxins: staphylococcal enterotoxins A through R (SEA-SER), and toxic shock syndrome toxin 1 (TSST-1), which contribute to its ability to cause disease in humans and laboratory animals [1,2,3,4,5,6,7,8]. The chemokines, IL-8, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein 1α (MIP-1α), and MIP-1 , are induced directly by SEB or TSST-1 and selectively activate and direct migration of leukocytes, neutrophils and dendritic cells to sites of tissue injury [16,17]. These mediators are pathogenic at high concentrations in vivo and induce fever, organ dysfunction, and death

Physical properties of staphylococcal superantigens
Human diseases caused by staphylococcal superantigens
Binding to MHC class II
Binding to TCR
Co-stimulatory molecules on host cells
Signal transduction
In vitro cellular response
Signaling and biological effects of proinflammatory mediators
Animal Models
Emetic response models
Murine models of toxic shock using potentiating agents
Transgenic mouse models
Murine models using only SEB
Influence of animal models on efficacy of therapeutics
Antibodies against superantigens
Inhibitors of cell receptor-toxin interaction
Inhibitors of SEB signal transduction
Inhibitors of cytokine induction
Inhibitors of cytokine signaling
Findings
Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.