Abstract

Persistent viral infections are associated with host and viral factors that impair effective antiviral immunity. Natural killer (NK) cells contribute to establishment of persistent lymphocytic choriomeningitis virus (LCMV) infection in mice through suppression of virus-specific T cell responses during the first few days of infection, but NK cell depletion during those early time points can enable severe T cell-mediated immune pathology and death of the host. Here we show that long after their peak in cytolytic activation, NK cells continue to support viral persistence at later times of infection. Delayed depletion of NK cells, 2 to 3 weeks after infection, enhanced virus-specific T cell responses and viral control. This enhancing effect of delayed NK cell depletion on antiviral immunity, in contrast to early NK cell depletion, was not associated with increased morbidity and mortality, and mice quickly regained weight after treatment. The efficacy of the depletion depended in part upon the size of the original virus inoculum, the viral load at the time of depletion, and the presence of CD4 T cells. Each of these factors is an important contributor to the degree of CD8 T cell dysfunction during viral persistence. Thus, NK cells may continuously contribute to exhaustion of virus-specific T cells during chronic infection, possibly by depleting CD4 T cells. Targeting of NK cells could thus be considered in combination with blockade of other immunosuppressive pathways, such as the interleukin-10 (IL-10) and programmed death 1 (PD-1) pathways, as a therapy to cure chronic human infections, including those with HIV or hepatitis C virus. IMPORTANCE Persistent virus infections are a major threat to global human health. The capacity of viruses, including HIV and hepatitis C virus, to overwhelm or subvert host immune responses contributes to a prolonged state of dampened antiviral immune functionality, which in turn facilitates viral persistence. Recent efforts have focused on therapeutics that can restore the effector functions of these functionally exhausted virus-specific T cells in order to expedite viral clearance. Here we establish that natural killer (NK) cells actively contribute to immune dysfunction and viral persistence at later stages of infection. This previously undescribed mechanism of immune suppression during chronic infection provides a vital clue for the design of novel therapeutic strategies targeting NK cell immunosuppressive activity in order to restore immune function and enhance viral control in chronically infected individuals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call