Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by loss-of-function mutations in the COL7A1 gene, which encodes type VII collagen (C7), a protein that functions in skin adherence. From 36 Korean RDEB patients, we identified a total of 69 pathogenic mutations (40 variants without recurrence), including point mutations (72.5%) and insertion/deletion mutations (27.5%). For fibroblasts from two patients (Pat1 and Pat2), we applied adenine base editors (ABEs) to correct the pathogenic mutation of COL7A1 or to bypass a premature stop codon in Pat1-derived primary fibroblasts. To expand the targeting scope, we also utilized prime editors(PEs) to correct the COL7A1 mutations in Pat1- and Pat2-derived fibroblasts. Ultimately, we found that transfer of edited patient-derived skin equivalents (i.e., RDEB keratinocytes and PE-corrected RDEB fibroblasts from the RDEB patient) intothe skin of immunodeficient mice led to C7 deposition and anchoring fibril formation within the dermal-epidermal junction, suggesting that base editing and prime editing could be feasible strategies for exvivo gene editing to treat RDEB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.