Abstract

Because the functional apoptosis-initiating protein, cytochrome C (CytC) is rapidly cleared from the circulation (t1/2 (half-life): 4 minutes), it cannot be used for in vivo therapy. We report herein on a hitherto unreported strategy for delivering exogenous CytC as a potential and safe antiobesity drug for preventing diet-induced obesity, the most common type of obesity in humans. The functional activity of CytC encapsulated in prohibitin (a white fat vessel-specific receptor)-targeted nanoparticles (PTNP) was evaluated quantitatively, as evidenced by the observations that CytC-loaded PTNP causes apoptosis in primary adipose endothelial cells in a dose-dependent manner, whereas CytC alone did not. The delivery of a single dose of CytC through PTNP into the circulation disrupted the vascular structure by the targeted apoptosis of adipose endothelial cells in vivo. Intravenous treatment of CytC-loaded PTNP resulted in a substantial reduction in obesity in high-fat diet (HFD) fed wild-type (wt) mice, as evidenced by the dose-dependent prevention of the percentage of increase in body weight and decrease in serum leptin levels. In addition, no detectable hepatotoxicity was found to be associated with this prevention. Thus, the finding highlights the promising potential of CytC for use as an antiobesity drug, when delivered through a nanosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.