Abstract

BackgroundTargeted radionuclide therapy with high-energy beta-emitters is generally considered suboptimal to cure small tumours (<300 mg). Tumour targeting of the CCK2 receptor-binding minigastrin analogue PP-F11 was determined in a tumour-bearing mouse model at increasing peptide amounts. The optimal therapy was analysed for PP-F11 labelled with 90Y, 177Lu or 213Bi, accounting for the radionuclide specific activities (SAs), the tumour absorbed doses and tumour (radio) biology.MethodsTumour uptake of 111In-PP-F11 was determined in nude mice bearing CCK2 receptor-transfected A431 xenografts at 1 and 4 h post-injection for escalating peptide masses of 0.03 to 15 nmol/mouse. The absorbed tumour dose was estimated, assuming comparable biodistributions of the 90Y, 177Lu or 213Bi radiolabelled peptides. The linear-quadratic (LQ) model was used to calculate the tumour control probabilities (TCP) as a function of tumour mass and growth.ResultsPractically achievable maximum SAs for PP-F11 labelled with 90Y and 177Lu were 400 MBq 90Y/nmol and 120 MBq177Lu/nmol. Both the large elution volume from the 220 MBq 225Ac generator used and reaction kinetics diminished the maximum achieved 213Bi SA in practice: 40 MBq 213Bi/nmol. Tumour uptakes decreased rapidly with increasing peptide amounts, following a logarithmic curve with ED50 = 0.5 nmol. At 0.03 nmol peptide, the (300 mg) tumour dose was 9 Gy after 12 MBq 90Y-PP-F11, and for 111In and 177Lu, this was 1 Gy. A curative dose of 60 Gy could be achieved with a single administration of 111 MBq 90Y labelled to 0.28 nmol PP-F11 or with 4 × 17 MBq 213Bi (0.41 nmol) when its α-radiation relative biological effectiveness (RBE) was assumed to be 3.4. Repeated dosing is preferable to avoid complete tumour receptor saturation. Tumours larger than 200 mg are curable with 90Y-PP-F11; the other radionuclides perform better in smaller tumours. Furthermore, 177Lu is not optimal for curing fast-growing tumours.ConclusionsReceptor saturation, specific radiopharmaceutical activities and absorbed doses in the tumour together favour therapy with the CCK2 receptor-binding peptide PP-F11 labelled with 90Y, despite its longer β-particle range in tissue, certainly for tumours larger than 300 mg. The predicted TCPs are of theoretical nature and need to be compared with the outcome of targeted radionuclide experiments.

Highlights

  • Targeted radionuclide therapy with high-energy beta-emitters is generally considered suboptimal to cure small tumours (

  • 111In-PP-F11 showed low retention in the kidneys in combination with a high uptake in A431 xenografts transfected with the CCK2 receptor in comparison with other minigastrin analogues

  • Since the receptor-mediated tumour uptake of radiolabelled PP-F11 shows a saturable relation with peptide mass, the maximum achievable specific activity is an important parameter in this respect

Read more

Summary

Introduction

Targeted radionuclide therapy with high-energy beta-emitters is generally considered suboptimal to cure small tumours (

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call