Abstract

To determine the role of the adenosine receptor A2a in a murine model of LPS-induced lung injury, migration of polymorphonuclear leukocytes (PMNs) into the different compartments of the lung was determined by flow cytometry, microvascular permeability was assessed by the extravasation of Evans blue, and the release of chemotactic cytokines into the alveolar airspace was determined by ELISA. Measurements were performed in wild-type and A2a gene-deficient mice (A2a(-/-)). To differentiate the role of A2a on hemopoietic and nonhemopoietic cells, we created chimeric mice by transfer of bone marrow (BM) between wild-type and A2a(-/-) mice and used mice that lacked A2a expression selectively on myeloid cells (A2a(flox/flox) x LysM-cre). A specific A2a receptor agonist (ATL202) was used to evaluate its potential to reduce lung injury in vivo. In wild-type mice, therapeutic treatment with ATL202 reduced LPS-induced PMN recruitment, and release of cytokines. Pretreatment, but not posttreatment, also reduced Evans blue extravasation. In the BM chimeric mice lacking A2a on BM-derived cells, PMN migration into the alveolar space was increased by approximately 50%. These findings were confirmed in A2a(flox/flox) x LysM-cre mice. ATL202 was only effective when A2a was present on BM-derived cells. A2a agonists may be effective at curbing inflammatory lung tissue damage.

Highlights

  • In wild-type mice, therapeutic treatment with ATL202 reduced LPS-induced polymorphonuclear leukocytes (PMNs) recruitment, and release of cytokines

  • Why The JI? Submit online. Rapid Reviews! 30 days* from submission to initial decision No Triage! Every submission reviewed by practicing scientists Fast Publication! 4 weeks from acceptance to publicatio

  • We studied the migration of polymorphonuclear leukocytes (PMNs) into the different compartments of the lung in wildtype and global as well as myeloid-specific A2a gene-deficient mice

Read more

Summary

Introduction

In wild-type mice, therapeutic treatment with ATL202 reduced LPS-induced PMN recruitment, and release of cytokines. LPS-induced microvascular permeability in the lung of wild-type and A2aϪ/Ϫ mice was determined using the Evans blue dye extravasation technique [35]. LPS inhalation induced PMN recruitment into all compartments of the lung of wild-type and A2aϪ/Ϫ mice.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.