Abstract

To assess if pretargeting, using a combination of a recombinant bispecific antibody (bsMAb) that binds divalently to carcinoembryonic antigen (CEA) and monovalently to the hapten histamine-succinyl-glycine and a (90)Y-peptide, improves therapeutic efficacy in a human colon cancer-nude mouse xenograft compared with control animals given (90)Y-humanized anti-CEA immunoglobulin G (IgG). Clearance and biodistribution were monitored by whole-body readings and necropsy. Animals were monitored for 34 weeks with a determination of residual disease and renal pathology in survivors. Hematologic toxicity was assessed separately in non-tumor-bearing NIH Swiss mice. Hematologic toxicity was severe at doses of 100 to 200 microCi of (90)Y-IgG, yet mild in the pretargeted animals given 500 or 700 microCi of the (90)Y-peptide. Evidence of end-stage renal disease was found at 900 microCi of the pretargeted (90)Y-peptide whereas animals given 700 microCi showed only mild renal pathology, similar to that seen in control animals given (90)Y-IgG. Biodistribution data indicated that the average amount of tumor radioactivity by a 700-microCi dose of the pretargeted peptide over a 96-hour period was increased 2.5-fold (48 microCi/g) compared with 150 microCi of (90)Y-IgG (18.9 microCi/g). At these doses, survival (i.e., time to progression to 2.5 cm(3)) was significantly improved (P < 0.04) compared with (90)Y-IgG, with ablation of about one third of the tumors, whereas viable tumor was present in all of the (90)Y-IgG-treated animals. Pretargeting increases the amount of radioactivity delivered to colorectal tumors sufficiently to improve the therapeutic index and responses as compared with conventional radioimmunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call