Abstract

Photodynamic therapy (PDT) is a site-specific treatment of cancer involving the administration of a photosensitizer (PS) followed by the local light activation. Besides efficient PSs, image guidance is essential for precise and safe light delivery to the targeting site, thus improving the therapeutic effectiveness. Herein, we report the fabrication of theranostic porphyrin dyad nanoparticles (TPD NPs) for magnetic resonance imaging (MRI)-guided PDT cancer therapy, where the inner metal free porphyrin functions as a photosensitizer for PDT while the outer Mn-porphyrin serve as an MRI contrast agent. Covalent attachment of porphyrins to TPD NPs avoids premature release during systemic circulation. In addition, TPD NPs (~60 nm) could passively accumulate in tumors and be avidly taken up by tumor cells. The PDT and MRI capabilities of TPD NPs can be conveniently modulated by varying the molar ratio of metal free porphyrin/Mn-porphyrin. At the optimal molar ratio of 40.1%, the total drug loading content is up to 49.8%, 31.3% for metal free porphyrin and 18.5% for Mn-porphyrin. The laser light ablated the tumor completely within 7 days in the presence of TPD NPs and the tumor growth inhibition was 100%. The relaxivities were determined to be 20.58 s−1 mm−1 for TPD NPs, about four times as much as that of Mn-porphyrin (5.16 s−1 mm−1). After 24 h intravenous injection of TPD NPs, MRI images showed that the whole tumor area remained much brighter than surrounding healthy tissue, allowing to guide the laser light to the desired tumor site for photodynamic ablation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call