Abstract

This study developed a kind of magnetic-polymer nanocarrier with folate receptor-targeting and pH-sensitive multifunctionalities to carry doxorubicin (DOX) for treatment of advanced gastric cancer (AGC). Folate-conjugated, pH-sensitive, amphiphilic poly(β-aminoester) self-assembled with hydrophobic oleic acid-modified iron oxide nanoparticles, and the resulting hydrophobic interaction area is a reservoir for lipophilic DOX (F-P-DOX). Confocal microscopy illustrated that F-P-DOX treatment could keep higher DOX accumulation in cells than P-DOX (without folate conjugation), and therefore get a higher efficiency of DOX internalization at pH 6.5 than at pH 7.4. Electron microscope characterization and real-time polymerase chain reaction revealed cell apoptosis promoted by F-P-DOX. The better efficacy of F-P-DOX on GC than free DOX and P-DOX was determined by MTT assay and xenograft model. Moreover, the accumulation of F-P-DOX in the tumor site was detected by magnetic resonance imaging (MRI). All those observations suggest F-P-DOX could be a promising theranostic candidate for AGC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.