Abstract

Multifunctional programmed nanomachines with theranostic functions demonstrated great potential in the clinical practice of oncology, as well as the personalized nanomedicine. The reason is because such nanoagents with combined diagnostic and therapeutic functions were found to be highly effective for cancer treatment. The appropriate design of nanomachines allows them to overcome the biological barriers of proliferative tumors and to distinguish the cancer cells from their normal counterparts. Moreover, the use of biocompatible and biodegradable precursors for construction of nanomachines minimize significantly the caused adverse effects to the normal tissue cells, which is a main problem of the chemotherapy. In addition, the utilization of theranostic nanomachines also enables an improved selectivity to the cancer in respect to its intrinsic complexity, heterogeneity, and dynamic evolution. Here we present the programmable functions and performance of the microenvironment-responsive nanomachines at a molecular level for cancer imaging and therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.